



### MATHEMATICS HIGHER LEVEL PAPER 1

Wednesday 4 May 2011 (afternoon)

| 0   0 | 0 0 |  |  |  |  |
|-------|-----|--|--|--|--|
|-------|-----|--|--|--|--|

Candidate session number

2 hours

#### **INSTRUCTIONS TO CANDIDATES**

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Section A: answer all of Section A in the spaces provided.
- Section B: answer all of Section B on the answer sheets provided. Write your session number
  on each answer sheet, and attach them to this examination paper and your cover
  sheet using the tag provided.
- At the end of the examination, indicate the number of sheets used in the appropriate box on your cover sheet.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Blank page



Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

### **SECTION A**

Answer **all** the questions in the spaces provided. Working may be continued below the lines, if necessary.

| 1. | [Max | eximum mark: 7]                                           |           |
|----|------|-----------------------------------------------------------|-----------|
|    | Ever | nts A and B are such that $P(A) = 0.3$ and $P(B) = 0.4$ . |           |
|    | (a)  | Find the value of $P(A \cup B)$ when                      |           |
|    |      | (i) A and B are mutually exclusive;                       |           |
|    |      | (ii) $A$ and $B$ are independent.                         | [4 marks] |
|    | (b)  | Given that $P(A \cup B) = 0.6$ , find $P(A \mid B)$ .     | [3 marks] |
|    |      |                                                           |           |
|    |      |                                                           |           |
|    |      |                                                           |           |
|    |      |                                                           |           |
|    |      |                                                           |           |
|    |      |                                                           |           |
|    |      |                                                           |           |
|    |      |                                                           |           |
|    |      |                                                           |           |
|    |      |                                                           |           |
|    |      |                                                           |           |
|    |      |                                                           |           |

**2.** [Maximum mark: 4]

Given that  $\frac{z}{z+2} = 2 - i$ ,  $z \in \mathbb{C}$ , find z in the form a + ib.

| <br> |  |  |      |  |  | <br>• |  |  |  | - | <br> |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|------|--|--|------|--|--|-------|--|--|--|---|------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|
| <br> |  |  |      |  |  | <br>  |  |  |  |   | <br> |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <br> |  |  | <br> |  |  | <br>  |  |  |  |   | <br> |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <br> |  |  |      |  |  | <br>  |  |  |  |   | <br> |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <br> |  |  |      |  |  | <br>  |  |  |  |   | <br> |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <br> |  |  | <br> |  |  | <br>  |  |  |  |   | <br> |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <br> |  |  | <br> |  |  | <br>  |  |  |  |   | <br> |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <br> |  |  | <br> |  |  | <br>  |  |  |  |   | <br> |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|      |  |  |      |  |  |       |  |  |  |   |      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

| 3. | [Махітит           | mark. | 71 |
|----|--------------------|-------|----|
| J. | I IVI AX IIII UIII | mark. | // |

A geometric sequence  $u_1$ ,  $u_2$ ,  $u_3$ , ... has  $u_1 = 27$  and a sum to infinity of  $\frac{81}{2}$ .

(a) Find the common ratio of the geometric sequence.

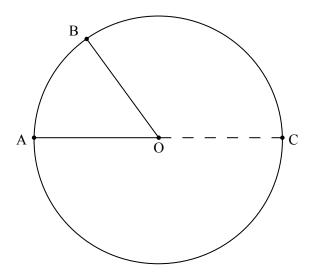
[2 marks]

An arithmetic sequence  $v_1$ ,  $v_2$ ,  $v_3$ , ... is such that  $v_2 = u_2$  and  $v_4 = u_4$ .

(b) Find the greatest value of N such that  $\sum_{n=1}^{N} v_n > 0$ .

[5 marks]

| • | • | ٠ | • | • | • | • | • | • | ٠ | ٠ | • | ٠ | ٠ | • | • | • | • | • | • | ٠ | • | • | • | • | • | • | • | • | • | • | • | • | • | ٠ | • | • | ٠ | • | • | • | • | • | • | ٠ | • | • | ٠ | ٠ | ٠ | ٠ | • | • | • | • | • | • | • | • | ٠ | • | ٠ | ٠ | • | ٠ | ٠ | • | • |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | • | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | • | ٠ | ٠ | ٠ | • | • | • | • |   |   | • | • | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | • | • | • | • | • | • | • | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | • | ٠ |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| • | • | ٠ | • | • | • | • | • | • | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | • | • | • | • | ٠ | • | • | • | • | • | • | • | • | • | • | • | • | ٠ | ٠ | • | ٠ | ٠ | • | • | • | ٠ | • | • | ٠ | • | • | ٠ | ٠ | ٠ | ٠ | ٠ | • | • | • | • |   | • | • | ٠ | • | ٠ | ٠ | • | ٠ | ٠ | • | • |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |


.....

.....

.....

# **4.** [Maximum mark: 5]

The diagram below shows a circle with centre O. The points A, B, C lie on the circumference of the circle and [AC] is a diameter.



Let  $\overrightarrow{OA} = a$  and  $\overrightarrow{OB} = b$ .

| (a) | Write down expressions for $\overrightarrow{AB}$ and $\overrightarrow{CB}$ in terms of the vectors $\boldsymbol{a}$ and $\boldsymbol{b}$ . | [2 marks] |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| (b) | Hence prove that angle ABC is a right angle.                                                                                               | [3 marks] |
|     |                                                                                                                                            |           |
|     |                                                                                                                                            |           |
|     |                                                                                                                                            |           |
|     |                                                                                                                                            |           |
|     |                                                                                                                                            |           |
|     |                                                                                                                                            |           |
|     |                                                                                                                                            |           |
|     |                                                                                                                                            |           |
|     |                                                                                                                                            |           |
|     |                                                                                                                                            |           |

**5.** [Maximum mark: 5]

| (a) | Show that $\frac{\sin 2\theta}{\cos \theta} = \tan \theta$ . |
|-----|--------------------------------------------------------------|
| (a) | $\frac{1+\cos 2\theta}{1+\cos 2\theta}$                      |

[2 marks]

| (b) | Hence find the value of $\cot \frac{\pi}{8}$ in | the form $a+b\sqrt{2}$ , where $a, b \in \mathbb{Z}$ |
|-----|-------------------------------------------------|------------------------------------------------------|
|-----|-------------------------------------------------|------------------------------------------------------|

[3 marks]

| <br> | <br> |
|------|------|
| <br> | <br> |

|  | <br> |  |  |  | <br> |  |  |  |  |  |  |  |  |  |  |  |  | <br> | - | - | - |  |  | <br> | - | - |  |  |  |  |  |  |  |
|--|------|--|--|--|------|--|--|--|--|--|--|--|--|--|--|--|--|------|---|---|---|--|--|------|---|---|--|--|--|--|--|--|--|
|  |      |  |  |  | <br> |  |  |  |  |  |  |  |  |  |  |  |  | <br> |   |   |   |  |  | <br> |   |   |  |  |  |  |  |  |  |

|  | • | • | • | • | • | ٠ | • | ٠ | • | • | • | • | • | • | • | <br>• | <br> | <br> | <br> | <br> | <br>• | • |  | <br> | <br> | <br> | • | • | • | ٠ | • | • | <br>• | ٠ | ٠ | • | <br> | ٠ | ٠ | ٠ | ٠ | • | • | • | <br> | • | • |
|--|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|-------|------|------|------|------|-------|---|--|------|------|------|---|---|---|---|---|---|-------|---|---|---|------|---|---|---|---|---|---|---|------|---|---|
|  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |       |      |      |      |      |       |   |  |      |      |      |   |   |   |   |   |   |       |   |   |   |      |   |   |   |   |   |   |   |      |   |   |

| <br> | <br>• • • • • • • • • • • • • • • • • • • • |
|------|---------------------------------------------|
| <br> | <br>                                        |

| <b>6.</b> | [Maximum | mark: | 5 | 7 |
|-----------|----------|-------|---|---|
|           |          |       |   |   |

In a population of rabbits, 1 % are known to have a particular disease. A test is developed for the disease that gives a positive result for a rabbit that **does** have the disease in 99 % of cases. It is also known that the test gives a positive result for a rabbit that **does not** have the disease in 0.1 % of cases. A rabbit is chosen at random from the population.

| (a) | Find the probability that the rabbit tests positive for the disease.                                                                         | [2 marks] |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| (b) | Given that the rabbit tests positive for the disease, show that the probability that the rabbit does not have the disease is less than 10 %. | [3 marks] |
|     |                                                                                                                                              |           |
|     |                                                                                                                                              |           |
|     |                                                                                                                                              |           |
|     |                                                                                                                                              |           |
|     |                                                                                                                                              |           |
|     |                                                                                                                                              |           |
|     |                                                                                                                                              |           |
|     |                                                                                                                                              |           |
|     |                                                                                                                                              |           |
|     |                                                                                                                                              |           |
|     |                                                                                                                                              |           |



| 7   | [Махітит     | mark. | 67    |
|-----|--------------|-------|-------|
| / • | ΙΙνιαλιπιαπι | mur.  | $v_I$ |

| Find the area enclosed by the curve $y = ar$ | ctan x, the x-axis and the line $x = \sqrt{3}$ . |
|----------------------------------------------|--------------------------------------------------|
|                                              |                                                  |
|                                              |                                                  |
|                                              |                                                  |
|                                              |                                                  |
|                                              |                                                  |
|                                              |                                                  |
|                                              |                                                  |
|                                              |                                                  |
|                                              |                                                  |
|                                              |                                                  |
|                                              |                                                  |
|                                              |                                                  |
|                                              |                                                  |
|                                              |                                                  |
|                                              |                                                  |

**8.** [Maximum mark: 6]

Consider the functions given below.

$$f(x) = 2x + 3$$

$$g(x) = \frac{1}{x}, x \neq 0$$

(a) (i) Find  $(g \circ f)(x)$  and write down the domain of the function.

(ii) Find  $(f \circ g)(x)$  and write down the domain of the function.

[2 marks]

(b) Find the coordinates of the point where the graph of y = f(x) and the graph of  $y = (g^{-1} \circ f \circ g)(x)$  intersect.

[4 marks]

| • | ٠ | • | • | • | • | • | • | • | • | • | • | • | ٠ | • | • | • | • | • | • | <br>• | • | • | • | • | • | • | ٠ | ٠ | • | • | • | • | • | • | • | • | • | • | • | • | <br>• | • | • | • | • | • | • | • | <br> | <br> | • | • | • | • | • | • | • | • | • | • | • | ٠ | • | • | • |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|-------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|-------|---|---|---|---|---|---|---|------|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |   |      |      |   |   |   |   |   |   |   |   |   |   |   |   |   |   | • |
| • |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |   |      |      |   |   |   |   |   |   |   |   |   |   |   |   |   |   | • |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |   |      |      |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |   | • |   |   |   |   |   |   |   |   |   |       |   |   |   | • |   |   |   | <br> | <br> |   | • |   | • |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |   | <br> | <br> |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |   | • |   |   |   |   |   |   |   |   |   |       |   |   |   | • |   |   |   | <br> | <br> |   | • |   | • |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | <br>  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |   | <br> | <br> |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   |   |      |      |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |

.....

| <b>7.</b>   111030111101111 11101110. | 9. | [Maximum | mark: | 7/ |
|---------------------------------------|----|----------|-------|----|
|---------------------------------------|----|----------|-------|----|

| Show that the poin common tangent. | its $(0,0)$ and | $\left(\sqrt{2\pi},-\sqrt{2\pi}\right)$ | on the curve $e^{(x+y)}$ | $=\cos(xy)$ have a |
|------------------------------------|-----------------|-----------------------------------------|--------------------------|--------------------|
|                                    |                 |                                         |                          |                    |
|                                    |                 |                                         |                          |                    |
|                                    |                 |                                         |                          |                    |
|                                    |                 |                                         |                          |                    |
|                                    |                 |                                         |                          |                    |
|                                    |                 |                                         |                          |                    |
|                                    |                 |                                         |                          |                    |
|                                    |                 |                                         |                          |                    |
|                                    |                 |                                         |                          |                    |
|                                    |                 |                                         |                          |                    |
|                                    |                 |                                         |                          |                    |
|                                    |                 |                                         |                          |                    |

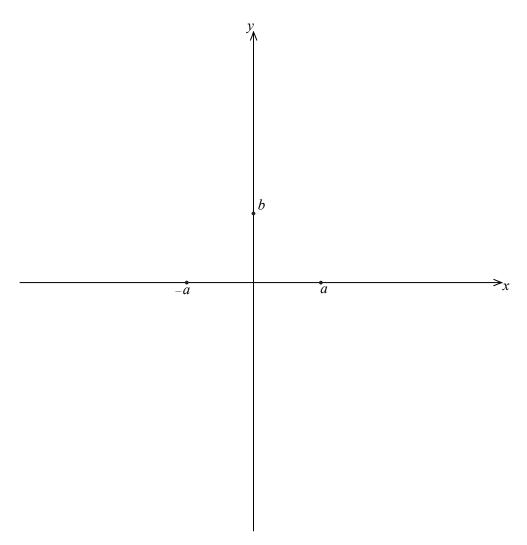
## **10.** [Maximum mark: 8]

The diagram below shows the graph of the function y = f(x), defined for all  $x \in \mathbb{R}$ , where b > a > 0.



Consider the function  $g(x) = \frac{1}{f(x-a)-b}$ .

| (a) | Find the largest possible dom | ain of the function g. | [2 marks] |
|-----|-------------------------------|------------------------|-----------|
|-----|-------------------------------|------------------------|-----------|


| <br> |
|------|
| <br> |
| <br> |
| <br> |
| <br> |
|      |

(This question continues on the following page)

# (Question 10 continued)

(b) On the axes below, sketch the graph of y = g(x). On the graph, indicate any asymptotes and local maxima or minima, and write down their equations and coordinates.

[6 marks]



Do **NOT** write solutions on this page. Any working on this page will **NOT** be marked.

#### **SECTION B**

Answer all the questions on the answer sheets provided. Please start each question on a new page.

**11.** [Maximum mark: 19]

The points A(1, 2, 1), B(-3, 1, 4), C(5, -1, 2) and D(5, 3, 7) are the vertices of a tetrahedron.

- (a) Find the vectors  $\overrightarrow{AB}$  and  $\overrightarrow{AC}$ . [2 marks]
- (b) Find the Cartesian equation of the plane  $\Pi$  that contains the face ABC. [4 marks]
- (c) Find the vector equation of the line that passes through D and is perpendicular to  $\Pi$ . Hence, or otherwise, calculate the shortest distance to D from  $\Pi$ . [5 marks]
- (d) (i) Calculate the area of the triangle ABC.
  - (ii) Calculate the volume of the tetrahedron ABCD. [4 marks]
- (e) Determine which of the vertices B or D is closer to its opposite face. [4 marks]

Do NOT write solutions on this page. Any working on this page will NOT be marked.

### **12.** [Maximum mark: 19]

Consider the function  $f(x) = \frac{\ln x}{x}$ ,  $0 < x < e^2$ .

- (a) (i) Solve the equation f'(x) = 0.
  - (ii) Hence show the graph of f has a local maximum.
  - (iii) Write down the range of the function f.

[5 marks]

(b) Show that there is a point of inflexion on the graph and determine its coordinates.

[5 marks]

(c) Sketch the graph of y = f(x), indicating clearly the asymptote, x-intercept and the local maximum.

[3 marks]

- (d) Now consider the functions  $g(x) = \frac{\ln|x|}{x}$  and  $h(x) = \frac{\ln|x|}{|x|}$ , where  $0 < |x| < e^2$ .
  - (i) Sketch the graph of y = g(x).
  - (ii) Write down the range of g.
  - (iii) Find the values of x such that h(x) > g(x).

[6 marks]

### **13.** [Maximum mark: 22]

(a) Write down the expansion of  $(\cos \theta + i \sin \theta)^3$  in the form a + ib, where a and b are in terms of  $\sin \theta$  and  $\cos \theta$ .

[2 marks]

(b) Hence show that  $\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$ .

[3 marks]

(c) Similarly show that  $\cos 5\theta = 16 \cos^5 \theta - 20 \cos^3 \theta + 5 \cos \theta$ .

[3 marks]

- (d) **Hence** solve the equation  $\cos 5\theta + \cos 3\theta + \cos \theta = 0$ , where  $\theta \in \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right]$ . [6 marks]
- (e) By considering the solutions of the equation  $\cos 5\theta = 0$ , show that  $\cos \frac{\pi}{10} = \sqrt{\frac{5+\sqrt{5}}{8}}$  and state the value of  $\cos \frac{7\pi}{10}$ . [8 marks]